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Abstract

Accurate localization of a vehicle is a fundamental challenge and one of the most im-

portant tasks of mobile robots. For autonomous navigation, motion tracking, and obstacle

detection and avoidance, a robot must maintain knowledge of its position over time. Vision-

based odometry is a robust technique utilized for this purpose. It allows a vehicle to localize

itself robustly by using only a stream of images captured by a camera attached to the vehicle.

Stereo visual odometry is an important technique for estimating the parameters of a cam-

era’s sensor relative to a scene. It relies on the principle that pixels in images taken by a pair

of cameras from two different viewpoints are usually visible in both images, but displaced.

This displacement can be used to compute the image’s depth map, which can be used to then

compute the position of the rover relatively to its previous positions.

To estimate the stereo projection, the passive stereo image is first warped to fix its perspective

so that all lines in each eye point along the same direction. For guided stereo reconstruc-

tion, this is commonly accomplished by estimating a correspondence function from images

of known disparity.

Given the insufficient amount of time, I put my focus on this last task, in other words, I

focused on getting the depth map from stereo camera images.
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LIST OF FIGURES

Introduction

EPFL Xplore is a student association from EPFL whose aim is to develop rovers to partici-

pate in Mars Society competitions in Poland and in the United States.

The project is divided in 3 main branches : Communication, Engineering and Finance. Each of

these main fields rely on the passion of involved students from various sections of the school.

Figure 1: Xplore logo

We are a team of over 40 students working on this project and I

have been tasked, in the context of a Bachelor semester project, to de-

velop part of the navigation software, particularly participate in the task

of odometry leveraging the power of machine learning and neural net-

works.

Motivation

Knowing the accurate position ( not using GPS ) of the rover is one of the most important

and challenging aspect of Xplore Navigation Subsystem. This step is crucial for our path plan-

ner, the mapping of the environment and our motor controller. So far we use a IMU and encoder,

but those solutions cannot detect slip and output wrong positions estimations. To solve this we

have a semester project on 3D Lidar odometry.

Unfortunately 3D LiDar are extremely expensive and it is a known fact that stereo cameras can

with some degree replace LiDars ( less precise and more prone to perturbations ). The goal of

this project is to use the stream of stereo cameras image pair to estimate the position of the rover.

Goal

Initially, given a dataset with the stereo cameras stream and the position of each frame, I

had to design a model to estimate the position of the rover given a sequence of 360 stereo image

pairs.

However I focused on getting the depth map from stereo images which can lead to getting an

estimation of the position of the rover.
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1 RELATED WORKS

1 Related works

1.1 AnyNet

AnyNet [1] is an architecture that leverages the power of neural networks and the efficiency

of other algorithms to implement theirs which combines time efficiency and accuracy. AnyNet is

used to compute disparity maps which can be transformed with some simple formulas to depth

maps.

Depth estimation should be accurate for mapping the environment, and real-time, typically for

obstacle avoidance, which is an important task for a rover. Current state-of-the-art algorithms

can either generate accurate but slow, or fast but high-error mappings, and typically have far too

many parameters for low-power/memory devices.

Motivated by this lack of efficiency, AnyNet proposes a new approach, which consists of com-

puting the disparity map in 3 to 4 stages, with ascending resolution, accuracy and time until

inference, which gives a good trade off between these metrics: as a larger computational budget

is made available, the prediction is refined and becomes more accurate.

Specificities

• Library used: Pytorch

• Camera type: Stereo

• Benchmark datasets: Sceneflow

and Kitti

Figure 2: Disparity prediction from 4
stages of AnyNet on KITTI-2015 (On

the paper)
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1 RELATED WORKS

1.2 Deeper depth prediction with FCRN (Fully Convolutional Residual Net-

works)

Deeper depth prediction with FCRN [2] is an algorithm that leverages the power of fully

convolutional neural networks to model the ambiguous mapping between monocular images

and depth maps. They use the reverse Huber loss that is particularly suited for the task at

hand and driven by the value distributions commonly present in depth maps. The model is

composed of a single architecture that is trained end-to-end and does not rely on post-processing

techniques.

Their main idea is to merge Mask R-CNN with FCRN. The modified FCRN, which can also

be regarded as an improvement through Mask R-CNN, is designed on the basis of attention

mechanism and optimized on the basis of transfer learning.

Specificities

• Library used: Tensorflow

• Camera type: No paticularity (single RGB image)

• Benchmark datasets: NYU Depth v2 and Make3D

Figure 3: Deeper depth prediction with FCRN qualitative results
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1 RELATED WORKS

1.3 Real-Time Panoramic Depth Maps from Omni-directional Stereo Images

for 6 DoF Videos in Virtual Reality

This paper [3] presents an approach for 6 DoF panoramic videos from omni-

directional stereo (ODS) images using convolutional neural networks (CNNs).

More specifically, they use CNNs to generate panoramic depth maps from ODS

images in real-time.

They approach the problem from a learning-based perspective: given an ODS

image (represented as a pair of equirectangular images) as input, predict a panoramic

depth map to allow for 6 DoF through depth based warping. They introduce a

border weighted loss function as well as new error metrics specifically tailored

for panoramic images.

Specificities

• Library used: Tensorflow

• Camera type: Stereo and large field view

• Dataset: Generated their own dataset

Figure 4: Left: ODS training images, Right: Left depth and normal maps
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1 RELATED WORKS

1.4 FastDepth: Fast Monocular Depth Estimation on Embedded Systems (MIT)

FastDepth [4] addresses the problem of current state-of-the-art algorithms

complexity and slowness. In this paper, they try to solve this issue of fast depth

estimation on embedded systems. They propose an efficient and lightweight

encoder-decoder network architecture and apply network pruning to further re-

duce computational complexity and latency.

Specificities

• Library used: Pytorch

• Camera type: No particularity (Monocular)

• Dataset: NYU Depth v2

Figure 5: Depth estimation on the NYU Depth v2 dataset. (a) input; (b) ground truth; (c) model,
without skip connections, unpruned; (d) model, with skip connections, unpruned; (e) model,

with skip connections, pruned

5



2 THE PREVIOUS WORK CHOSEN

2 The previous work chosen

2.1 Why AnyNet

In addition of looking for papers which give good results, we had some pref-

erences and requirements that we wanted to fulfill.

Our first requirement was to get a paper that gave access to their code. That

would help us beforehand test it to see if their results match what they suggest,

eventually improve it and adapt it to our needs. Thus we eliminated many good

papers which didn’t provide that information.

Being beginner friendly, easier to learn and lighter to work with, and hence, is

relatively better for passion projects and building rapid prototypes, we also pre-

ferred a code that uses pytorch over another that uses tensorflow.

Benchmark datasets for depth map computing are: KITTI, Sceneflow and NYU

DEPTH v2, especially KITTI which is very known to evaluate many image-

related tasks (odometry, depth, disparity ...). Thus, we would chose a paper

that evaluates its algorithm with KITTI over another algorithm that uses their

own dataset or other datasets.

It’s true that AnyNet outputs disparity maps rather than depth maps. But as

claimed in their paper, our researches led to many ways to transform disparity

maps to depth maps once we have all the metrics we need from the rover and

the cameras, leveraging this algorithm [5] for example.

6



2 THE PREVIOUS WORK CHOSEN

2.2 AnyNet’s algorithm

Figure 6: Network structure of AnyNet

In a few words, AnyNet [1] computes the depth map in 4 stages, each with

ascending resolution, and leveraging U-Net Feature extractor. In the first stage,

only the lowest-scale features (1/16) are computed and passed through a dispar-

ity network (fig.6) to produce low-resolution disparity map, which takes only

few milliseconds. For the rest of the stages, instead of computing a full disparity

map at this higher resolution, the next stage will simply correct the already-

computed disparity map from the previous one using a residual map, which

contains small corrections that specify how much the disparity map should be

increased or decreased for each pixel. Finally, the 4th isn’t necessary, it just gives

way better results for by sharpening the disparity map for little extra cost.

7



2 THE PREVIOUS WORK CHOSEN

2.3 Experimental results (Checking the papers’ results)

To recall, the result they claim they achieved is the one in (fig.2). To check

this result I used this stereo image from KITTI:

Figure 7: Stereo pair (left) Figure 8: Stereo pair (right)

Figure 9: Disparity map ground truth

The first 3 stages disparity maps found by running AnyNet on this stereo

pair:

Figure 10: Disparity experimental predictions

8



2 THE PREVIOUS WORK CHOSEN

The results seem actually pretty good, even in stage 3 without the refine-

ment we could clearly see the shapes, so we were quite optimistic about what

was coming.

Unfortunately, when we evaluated the accuracy of the model over the split

file provided, the results were :

Figure 11: Three-Pixel error (%) of AnyNet on KITTI-2012 and KITTI-2015 datasets

While the results given in the paper are :

Figure 12: Three-Pixel error (%) of AnyNet on KITTI-2012 and KITTI-2015 datasets (from the
paper)

It’s true that in the initial work, all results are averaged over five random-

ized 80/20 train/validation splits, so it’s expected that it wouldn’t exactly be the

same outcome. However, the results seem contradictory: the error that increases

at the 2nd stage each time doesn’t make much of sense: as we can see in fig.10 the

second disparity map is sharper than the first one, and AnyNet is supposed to

give a better disparity map at each step. We noticed that an issue has been raised

about this subject from someone who has similar results to ours after evaluating

the model. However, no answer has been provided.

9



3 DATASET

Nevertheless, as the results seemed pretty good visually on KITTI’s samples,

we decided to move forward and still count on AnyNet to compute our depth

map.

3 Dataset

During nearly the whole semester, I only had some indoor quickly recorded

dataset to work on in order to test the model. Here’s a sample from the first

dataset I was first provided with its ground truth depth map (with the LiDar):

Figure 13: Upper camera /Lower camera / Depth map from the first dataset

10



3 DATASET

Then, on the 13th of June, I was provided the new dataset recorded lately.

Here’s a sample:

Figure 14: Upper camera /Lower camera / Depth map from the second dataset

11



4 DEPTH ESTIMATION

4 Depth Estimation

4.1 First dataset

Notice: I specify that for all the tests, we chose to give the depth map as the

ground truth to the model as we thought it should be able to adapt given both

basically do the same job when we consider a stereo image.

At first, given that the dataset that you can see in fig.13. It was bad, the ground

truth was not clear enough to make the necessary shifts and cropping on the

stereo images to get the right proportion. In other words, the proportion of the

stereo image that matches the Lidar’s depth map was nearly impossible to deter-

mine as the Lidar captures a very tiny proportion of the landscape vertically, in

addition to the fact that the images and the lidar don’t start from the same point

(images should be shifted by hundreds of pixels to match Lidar’s referential).

An important point to know is the fact that AnyNet model doesn’t work if the

depth map isn’t the same size as the input stereo, so given that we couldn’t

determine the proportion of the depth that matches the stereo, it was nearly im-

possible to work with properly and determine from where a potential error in

the estimation would come from.

To bypass this problem to test out the model, we just resized the depth map to

the same size as stereo images, and tried to overfit the model on 1 image only.

One should also know that depth maps shouldn’t be given as RGB but should

only have 1 layer. Fortunately our depth map is grey-scale so we took 1 layer

out to work with as they’re all the same.

12



4 DEPTH ESTIMATION

After trying many parameters and manipulations, here are the results of

what we’ve tested:

Figure 15: Disparity maps of the stereo image
finetuned with KITTI (3 stages)

Figure 16: Disparity maps of the stereo image
finetuned with the image itself (aim to overfit, 3

stages)
As you can see, the results are quite bad, but at this point we didn’t necessar-

ily think that the problem would or wouldn’t come from the model not matching

our dataset, given that the supposedly ground truth itself was bad, so we asked

for a new and cleaner dataset.

4.2 Code modification

In the meantime, while we were waiting for a new dataset to be recorded,

we did some analysis on our data and the one provided by KITTI because the

results were so far from the supposedly ground truth (we thought that it should

be a minimum similar given that we overfitted the model on 1 stereo image only

13



4 DEPTH ESTIMATION

and tested it on ther same image).

Thus, we noticed that the values of the pixels from KITTI’s disparity map go

from 0 to 16406 while the pixels’ values of the depth map we’re provided only

go from 0 to 255 while it should be a able to reach higher values given the nature

of a depth map.

Considering that we weren’t provided the necessary metrics to get these high

initial values nor to get a disparity map, we chose to change the dataloader in

a way that the values of the depth map are of the same magnitude as KITTI’s

disparity when using the model (otherwise the model receives values between

0 and 1 which causes bad outputs).

14



4 DEPTH ESTIMATION

4.3 Second dataset

On 13th of June, we received the new dataset, and I worked with the follow-

ing stereo pair:

Figure 17: Upper camera/ Lower camera/ Depth map of the new dataset

Now that the depth map is quite clear, we could more or less match a pro-

portion of the stereo with the depth map. Here’s the result of the preprocessed

pair:

15



4 DEPTH ESTIMATION

Figure 18: Processed Upper and Lower camera/ Depth map

Given that the cameras and Lidar don’t have the same reference (they cap-

ture the image at different angles so they’re not centered in the same way), we

shifted the image in a way that could overcome this issue. Also, the Lidar only

captures a small amount of the landscape vertically, so we cropped parts of the

image that were irrelevant and didn’t match with the actual pair, only taking

into account what’s farthest points. Finally we resized because the Lidar was

1024x64 while the pair is initially 4k.

We can see that the left part matches quite well the depth map: actually, it’s

literally impossible to match all the picture with Lidar’s depth, so we focused

on matching as good as possible with a high focus on the farther points and ig-

noring the near ones as they’re supposed to be impossible to match given that

these points are different even in the original unprocessed pair.

We tried to overfit our model with the new pair, changing the parameters

in a way that could output a clearer depth map, and we managed to get some

improvements:

16



4 DEPTH ESTIMATION

Figure 19: Model overfit on pair with default parameters

Figure 20: Model overfit on pair with 1000 epochs, maxdisp 255 and learning rate 10−3

Figure 21: Model overfit on pair with 1000 epochs, maxdisp 192 and doubling maxdisp values

We tried to test the output on KITTI’s finetuning, but it’s coded in a way that

the output is 512x256, which clearly gives worse results given the shape of out

depth map.

17



5 DISCUSSION

5 Discussion

Unfortunately, the results aren’t that good with respect to what we expected.

It could be bad due to many issues:

• Our pair is recorded using upper and lower cameras, where all models that

compute the depth maps that we found, including AnyNet, use images that

are recorded using left and right cameras.

• During the time we had the dataset, we noticed that when we want to pre-

process the pair to match the depth map, we can’t implement a simple al-

gorithm to do so: for example in the above pair, we had to shift the pair by

1950 pixels, while in another pair we have to shift by 2400 pixels and so on.

Thus there could possibly be a problem in the way we get the data.

• As said in the beginning, we considered that the depth map would work

due to the direct relation between the depth map and disparity map. How-

ever, it could possibly change everything if we take the time to get the nec-

essary metrics to first compute the disparity map and then use it for the

model.

18



6 CONCLUSION

6 Conclusion

This semester project has been a very enriching and rewarding experience.

It gave me the opportunity to discover a very important and interesting field,

which is that of machine learning, a field that is becoming increasingly popular

in the world. I have learned a lot from this project and from my supervisor, and

I think it was an essential project for me as it allowed me to explore a field that

could give me so many different possibilities, and reassures me in my choice to

become a Data scientist.

I would like to thank my project supervisor George Adaimi for providing

me with valuable advice and helping me when I felt the need to, Pf. Alexandre

Alahi for hosting this project, and the EPFL Xplore team for this first experience.
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